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Chapter 8 - Software Reliability Measurenent Experience

In this chapter, we describe a recent study of software
reliability neasurenent nethods that was conducted at the Jet
Propul sion Laboratory. The first section of the chapter, section
8.1, summari zes the study , characterizes the participating
prOJFCtS, describes the available data, and summarizes the study’s
results.

The second section, 8.2, gives details on defining and
collecting failure data as well as selecting software reliability
measurenent tools. In the gpL study, we found that one of the nost
important parts of a software reliability measurement programis
identifying the data to be collected and setting up accurate data
col l ection mechani sns.

Section 8.3 presents the results of the study, conparing the
predictions made by the various nodels and draw ng concl usions from
the conparisons. Section 8.4 discusses one particular finding of
the study in nore detail - we found that a linear conbination of
model results tends to yield nore accurate predictions than the
i ndi vidual nodels thenmselves over the data sets we exam ned.

Section 8.5 summari zes the main points of the chapter, anti
suggests areas for further study.

8.1 A Practical. study at JPL

_ In Cctober, 1989, the Jet Ppropulsion Laboratory (JprL)
Directorts Discretionary Fund funded a proposal to study the ways
in which software reliability measurement technlques m ght be
aPPI|ed to JPL and ot her NASA software devel opment efforts. This
effort continued over the next two years, analyzing failure data
from previous and current JPL projects. The study resulted in a
set of recommendations for the application of software reliability
measur enent techni ques, which will be discussed in this chapter.

8.1.1 Purpose Of Study

There were 4 nmajor goals in the JPL study. These were

1. Assess the impact of software conponents on the overall
system reliability in the. JPL enviropneoi. For
representative JPL-devel.oped systems, we wanted to have
a Idea of the extent to which the software conponents’
reliability would affect the overall systemreliability.
The followng exanple shows the extent to which the
software’s reliability may affect the overall system
reliability for one particular type of JPL system
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Figure 1 shows a system with the follow ng software
characteristics:

1 Het er ogeneous distributed operating system
2. 5648 grograns _
3. 324,500 l'ines of high-level. |anguage source code
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Figure 1 - System Bl ock D agram

The MTBFs for each hardware system conponent. are:

sys1 hardware - 280 hours
SYS2 hardware - 387 hours

The SYS2 redundancy block in Figure 1 represents a 2-out-

of -3 structure, yielding a MIBF of 5000 hours for that
block's hardware.

LAN © mmmmm e 10, 000 hours
GEN fecmmmmeeccaaiaaaaaa 600 hours
Supervi sory SYS2 hardware - 387 hours

If the reliability of SYSL and SYS2 software. is assuned
Lo be 1, the estimated MIBF for the system is 123.1
ours.

However, the methods described in section 2.3.2.1 of
t hi s handbook and [RrRaDc87) can be used to estimate the
reliability of the software conponents. These techniques
use neasurenents of the software and the devel opnent
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process to estimate the error density that would be seen
at the end of the inplenmentation phase, prior to any
actual testing that would occur. Maki ng assunptions
about the usage patterns of the software and using infor-
mati on about the speed of the conputers, this error
density can be used to estimte the failure rate that
woul d be seen at the start of systemtest. Using these
methods, the estimated MIBF for the software was ,11.9
mnutes. This would translate into an estimated MTBF for
the systemof about 11.9 mnutes, a significant departure
fromthe 123.1 hours initially estimated.

This systemis typical of many current systens in
that nost of its functionality is inplenmented in the
software conponents. There are two observations that can
be nade at this point. The first is that in systens of
the type shown in this exanple, the reliabilify of the
software is the dom nant factor in determning overal
s%sten1rellablllty. Therefore, a reliability of 1 for
the software conponent of the system should not be
assuned in estimating systemreliability. Failure to
take the software reliability into account will result in
grossly inaccurate estimates and predictions of the
system's failure behavior. The second observation
related to the first, is that for a given system the
reliability of the hardware conponents tends to be high
quite early in the system developnent life cycle. The
reliability of the software conponents, however, only
increases late in the life cycle during the test|ng
phases, as faults in the those conponents are detecte
and renoved.

Devel op quantitative software reliability nodels for JgPL.
During this study, we wanted to |ook at currently-
avail abl e software reliability nmeasurenent techniques and
identify those that would be applicable to JPL software
devel opnent efforts. Fortunately, there has been a great
deal of research in this area over the past 20 years, so

there was no lack of information in this area. The
met hods we |ooked at can be roughly categorized as being
either —execution-based or early prediction. The

execution based techniques are those that can be used
only after the software has been executed and failures

have been observed. These nethods tend to be used
starting wth subsystem integration and continuin
through system integration, acceptance test, an

oEeratiQns: ~Early prediction nmethods attenpt to predict
the reliability of the software prior to the start of the
test phase, using neasurenents of product and devel opnment
process characteristics. [RADC87) is an exanple of such
a method. At the time of the study, alnost all of the
avai l abl e nethods were execution-based.
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3. Refine and validate nodels using JPL software failure
data. After identifying appropriate software reliability
measurement techniques for JPL software devel opnent
efforts, we wanted to validate and refine 'these
techniques. The mgjor refinement was to devise a method
of conbining nodel results that tended to yield nore
accurate predictions than the conponents of the
conbi nation

4, Develop quidelines for the application of software
reliability modelinag technigues. During the study, we
devel oped a set of guidelines that could be used by
software  project managers, line management, and
devel opment personnel to specify and inplement a software
reliability nmeasurenment program . These guidelines,
avail able in the formof a JPL publication [JPL91), cover
the follow ng points:

a. Establishing software reliability objectives.

b. Prelimnary software reliability nodel selection

C. Setting up data collection mechanisns.

d. Choosing software reliability measurenent tools.

€. Final software reliability nodel selection

f. Model application and application issues

The gui debook al so provides brief descriptions of sonme of
the rmore wdely-used software reliability nodels,
describes the benefits of using these nodeling
techniques, and also discusses their limtations.

8.1.2 Proiect Selection and Characterization

_For this study, we decided to look at failure data from
previous and current JPL flight projects. W also analyzed failure
data from a JPL-devel oped ground-based system for tracking and
acquiring data from Earth resources satellites in high-inclination
orbits. Finally, we analyzed previously-published failure data
(MUsA80) for ground-based systems. This variety of data would give
us a chance to see whether the reliability neasurenent techniques
deverped for one type of devel opnent effort would work well for
anot her .

Each of the flight projects developed a planetary exploration

spacecraft, along with the ground support software. For each
spacecraft, the flight software was about 15,6000 source |ines of
code. In nost cases, the software was split between two processors

- one to control the spacecraft attitude, and the other to process
upl i nked commands and relay science and engineering telemetry back
to the mssion operators. For the flight projects, nost of the
software was witten in assenbly |anguage.
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The resources satellites tracking and data acquisition system
contai ned about 100,000 source lines of code, and was witten in a
m xture of C, FORTRAN, and various database query |anguages

8.1.3 Characterization of Available Data

For all of the JpL efforts, the follow ng data was avail abl e:

Date on which a failure occurred.
Fai l ure description. _

Reconmended corrective action
Corrective action taken.

Date on which failure report was closed.

oIk wroe
L]

For each of the flight projects, the severity of each failure was
al so avail abl e.

~ W can see right away that not quite enough information is
avai l able to aBpIy software reliability nodels. ecal | that to use
software reliability nmodels, data in the form of failure counts and
test interval lengths, or tine between successive failures is
needed. The number of failures could certainly be counted, but.
test interval |engths had not been systematically recorded. At.
this point, it was necessary to interview nmenbers of the various
devel opment teanms to get sone idea of what the staffing profile
| ooked |ike during the testing phases. |n some cases we were able
to get the necessary infornmation fromthe devel opnent staff - in
one specific case, one of the investigators for this study had
previously been a nenber of the devel opnent staff for one of the
projects during software integration, and was able to recall enough
about the testing phase to provide fairly accurate information

about the length of each test interval. For about half the efforts
we studied, however, we were unable to get reliable information
about test interval |engths. In these cases, we had use our

know edge of other, simTlar devel opment efforts to nmake estinates
of test interval lengths. This situation influenced the content of
the gui debook, which contains a fairly detailed set of
recommendati ons about collecting failure data.

8.1.4 Summary of Results

~ One of the nost inportant things we discovered is that for the
failure data we analyzed, no one nodel was consistently the best.
It was frequently the case that a nodel that had performed well for
one set of JPL failure data would performbadly for a different.
set. W therefore recormended that for any devel opnent effort,
several nodels, each making different assunptions about the testing
and debuggi ng process, be sinultaneously be applied to the failure
dat a. al so recommended that each model's applicability to the
failure data be continuously nmonitored. Traditional goodness-of-.
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fit tests, such as the Chi-Square or Kol nogorov-Smirnov tests, can
be used. In addition, the nethods described in [GHALY86] are al so
strongly reconmmended.

Anot her discovery was that of the software devel opnment efforts
we studied, only one specified a set of reliability requirenents

that we felt were neasurable. Strictly speaking, it is not
necessary to have a reliability requirement for systemin order to
apply software reliability measurenent techniques. It is quite

possible to measure a software systenis reliability during test and
make predictions of future behavior. However, the existence of a
requi renent is very helpful in that;

1. Specifying a reliability requirement helps the users and
devel opers focus on the conponents of the system that.
w |l have the nost effect on the systems overall.
reliability. Potentially unreliable conmponents can be
respecified Or redesigned to increase their reliability.
2. Areliability requirenent will serve as a goal to be
achieved during the devel opment effort. During the

testing phases, software developers and managers can
estimate software reliability and determ ne how cl ose
they are to the required value. The difference between
current and required reliability can be converted into
estimates of the time and resources that will be required
to achieve the goal

‘W al so discovered that one of the nost inportant. aspects of
setting up a software reliability nmeasurenent program is
identifying the data to be collected and setting up a data
col | ection mechani sm We found that devel opment organi zations
general |y have the capability to collect the type of data that is
required to use software reliability neasurenent techniques. Every
sof tware devel opnent effort that we | ooked at has a mechani sm for
recording and tracking failures that are observed during the
testing phases and during operations. At the tinme of the stud%,
nost projects of which we are aware al so had requirenments for the
test staff to keep an activity log during the testing phases.
Properly used, these data collection nechanisnms woul d provide
accurate failure data in a formthat could easily be used by many
currently-available software reliability nodels. However, since
many software nmanagers and devel opers are not aware of the types of
anal ysis that can be done with this data, they do not devote the
effort required to ensure that the collected data is conplete and
accur at e.

Finally, we discovered that a properly-defined Iinear
conbi nation of nodel results produced nore accurate predictions
over the set of failure data that we analyzed than any one
i ndividual nodel. O the various nethods of forming conbinations,
we found that one in which all conponents of the conbination are
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%iven equal wei ght prpduced_surpr|3|ngk¥ good results [LYU91a]).
her methods in which weights are dynamcally assigned to
components of the conbination require nore conputation, but produce
better results than the statically-weighted nmethod [1yus2).

8.2 Reliability Requirement Specification, Fajlure Data
Collection, and Model Application

8.2.1 Est abl i shing_software Reliability Requirenents

Software reliability nodeling techniques are used to predict
a software systenis failure behavior during test and operations.
Software reliability requirenents are specified during earlier
devel opnent phases, and these nodeling techniques are used to
estimate the resources that will be required to achi eve those
requirements. The resource requirenents are translated into
testing schedul es and budgets. Resource estimtes are conpared to
the resources actually available to make quantitative, rather than
qualitative, statements concerning achievenment of the reliability
requirements.

8.2.1.1 Expressing Software Reliability

Reliability and reliability-related requirenents can be
expressed in one of the three follow ng ways:

L. Probability of failure-free operation over a specified
time interval

2% Mean time to failure (MITF).

3 Expected nunber of failures per unit time interva
(failure intensity).

The first form the accepted definition of software reliability, is
a probabilistic statement concerning the software's failure
behavior. The other two forns can be considered to be related to
reliability. Reliability and reliability-related requirements mnust
be stated in quantitative terms.. Qherwise, it will not be
ﬁOSSIb|e to determne whether the requirenents have been net. To
el p in understanding how to devel op these requirenents, exanples
of testable and untestable reliability requirements are given in
the follow ng paragraphs.

The follow ng statenents, paraphrased from a JPL software
devel opnent effort, represent a requirement for which software
reliability nodeling techniques can be used to determne the de?ree
to which that requirement has been net. “Reliability quantifies
the ability of the systemto performa required function under the
stated conditions for a period of tine. Reliability is measured by
the nean time between failures of a critical conponent. Under the
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expected operational conditions, docunmented in paragra%h [TBD] of
this requirenments docunent, the probability of the MITF for the
software being greater than or equal to 720 hours shall be 90%."

The above requirement is stated in a testable manner. [f the
expected operational conditions are stated in ternms of the
operati onal hardware configuration and the fraction of time each
maj or functional area is expected to be used (the operationa
profile), the test staff can then design tests to sinmulate expected
usage patterns and use reliability estimtes nmade during these
tests to predict operational reliability.

~ Confidence bounds shoul d be associated with reliability or
reliability-related requirenents. | f the above MITF requirenent
had been stated as being sinply 720 hours, it would have been
possible to neet that requirement with a very w de confi dence
interval (e.g. 90% probability of the MITF |ying between 200 and
1240 hours?. This could have resulted in the delivery of
operational software whose MITF was considerably |ess than the
i ntended 720 hours. Yet, the end users of the delivered software
woul d believe that the reliability requirement had been nmet. Not.
until the software was actually operated would the users realize
t he discrepancy. To avoid this problem express the reliability
requirement as the mninmum value of the confidence interval. This
w |l allow the end users to know the probability of the software
meeting its reliability requirement, and pernmt themto plan
accordingly.

An exaTRIe of an untestable reliabilitg-related requirenment is
now gi ven. gain, the text is paraphrased fromthat found in a JPI,

devel opnent effort's systemrequirenments docunment. “The systemis
designed to de?rade gracefully in case of failures. System fault.

protection shall ensure that no error or conponent failures wll

conpromse as a first priority, [safety restriction], and as a
second priority, mninmum mssion science objectives stated in
par agraph (TBD]. Amcordinglz, each instrunent shall be designed so
that if one fails éeither through hardware or software failures),

it wll not jeopardize the safety of the system or damage adjacent

instrunments. This includes provision for isolation fromthe system
via the instrument power supply. |f a system fault occurs, the
systemw || automatically stop any science data gathering and go to
a safe state. After a safe state is achieved and subsystens are
re-initialized, science can be resuned.”

The foregoing requirenent does not provide a basis against.
which the failure behavior of the system under devel opment can be
measured, as it contains no quantitative statements concerning the
systenis failure behavior. Rather, it is a statenent of design
constraints that are intended to |ocalize damage resulting froma
component failure to the immediate area (e.g. assenbly, subsystem
in which the failure occurred. During subsequent phases of system
devel opment, it is indeed possible to determ ne whether such
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constraints have been reflected in the system design and
i npl ementation. However, this information alone is not sufficient
to make quantitative statenents concerning the systenis failure
behavi or. Al t hough specifying constraints such as these is an
i nportant aspect of system specification, specific reliability
requirenents, simlar in formto the first reliability requirement
di scussed in this section, would have to be provided if it were
intended to use reliability estimtion techniques to determ ne
conpliance to a reliability requirenent.

8.2.1.2 Specifying Reliability Requirements

To specifg reliability requirenents, use one or nore of the
three methods described below.  The nethods are:

1. Syst em bal ance.
2. Rel ease date. o _
3. Life cycle cost optim zation.

It is possible to use one of these nmethods for devel oping the
requi rements for one conponent of the system and another for a
separate conponent.

~ The system bal ance nethod is primarily used to allocate
reliabilities anmong conponents of a system based on the overal
reliability requirenent for that system The basic principle of
this nmethod is to balance the difficulty of devel opnent work on
different conponents of the system The conponents having the nost
severe functional requirenents or are the. nost technol ogically
advanced are assigned |less stringent reliability requirenments. In
this way, the overall reliability requirement for the systemis net
while mnimzing the effort required to inplenent the nost conplex
components.  For software, this might translate to assigning |ess
stringent reliability requirements to functions never before
i mpl emrented or functions based on untried algorithns. Thi s
aﬁproach generally leads to the |east costly devel opment effort in
the mnimumtine. The system balance nethod is frequently used in
devel oping mlitary systens.

The second approach is used when the rel ease date is par-

ticularly critical. This is appropriate for flight systems facing
a fixed launch window. The release date is kept fixed in this
approach. The reliability requirenment is either established by

avail abl e resources and funds, or is traded off against these
items. Wth this approach, it is desirable to know how failure
intensity trades off with rel ease date. First, the way in which
the failure intensity trades off with software execution tinme is
det erm ned. This execution time is then converted to cal endar
time. The follow ng exanple uses the Goel-Okumoto and Miss- Ckunoto

nodel s.




For the Goel-Okumoto nodel, the relationship between the ratio

of failure intensity change dur|ng test and the execution tinme is
gi ven by:

Ao

T = J.n-i;

1
b

r = el apsed execution tine
= initial failure intensity
#.— required failure intensity
b = allure intensity decay paraneter

For the Miss-Ckumoto nodel, this relationship is given by:

~t, A, and A as above
0 = failure intensity decay paraneter

For this exanple, the failure history data from one of the testing
phases of a JPL flight programis used. Applying the Goel-Okumoto
and Muss-Ckunmoto nodels to this data, the foll'ow ng nodel paraneter
and failure intensity estinates are obtained:

U OO — S fﬁ
Goel Okumoto Mhsa—ﬁkumlt@
R = LTI Rt === o - :"w
A = L4408 farxhw&es// X = .5064 fallures/ coo
GPU heur CPU hour
a = 202.52 failures 0 = 1.693%x10°/failure
b = 6.0/ xx10”’
per failure

The above equations can be used to determ ne the anount of test

%|ne that will be needed for various failure intensity inprovenent
actors:

ailure Intensity Exeeuthaa TiifR «@EU'kufa)
npr ovenent Faector —— - - -
Aa/ A, @eeh &tum&t@ Mhss-&zum&@
160 1658 291@
100 2118 32076
1660 3177 323,677
10000 4236 3 239"%@®




The rel ationship of execution tine to calendar tine will vary with
the test phase, devel opnment methods, and the type of software under
devel opnent.  Know edge of how the failure intensity ratio varies
with execution tinme can be used to determne the general shape of
the relationship between calendar tine and failure intensity ratio.
An exanple of this relationship, adapted from (Musag7), is shown in
Figure 2. This relationship can be used to determine an attainable
fallure intensity ratio, given the release date and avail able
resources. The failure intensity requirement can then be obtained
fromthis ratio.

Note the differences between the predictions nmade by the two
model s. In the Miss-Ckunoto nodel, fhe. relationship between
addi tional execution tine needed and the inprovenent Pactor 'S
linear, while in the Goel-Okumoto model it is logarithmic. At this
point, a choice between the two nodels nust be made. Since it js
not possible to know a priori which nodel is best suited to the
data [6], the applicability of nmodels to a set of failure data must.
be evaluated while the nodels are being applied. Techniques for
determ ning nodel applicability, based _on those reported in
[(GHALY86], are summari zed in paragraph 8.2.8.2. Once.the nodel
most applicable to the failure data has been |o_Ient|?|edEE t hat .
model's rel ationship between failure intensity” ratio and execution
time can be used in conjunction with the relationship between
execution and calendar tinme to determne the failure intensity

requirenent.

Logarithmc
0i $S0N

Calendar time t

Basic

1

Failure intensity ratio %
e

Figure 2 - Failure Intensity Ratio vs. Calendar Tine
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The third approach, life cycle cost optimzation, is described

in the follow ng paragraphs. Al t hough this technique woul d be
difficult to apply to spacecraft flight software (since the |aunch
date is usually fixed), it would work well for ground-based

software not directly in the uplink or downlink path (e.g. inmage
processing software, |ong-term spacecraft scheduling, ground-based
spacecraft sinulation) . The basis for optimzation in this
technique is the assunption that reliability inprovenent is
obtai ned by nore extensive testing. Costs and schedul es for non--
testing phases are assumed to be constant. The part of devel opnent
cost due to testing decreases with higher failure intensity
requirements , while the operational. cost increases. The total cost
therefore has a mnimum This is shown below in Figure 3.

Figure 3 - Test, Qperational, and Total Cost

_ To find this mninum testing cost as a function of failure
intensity must be conputed. |f testing cost can be related to
calendar time, and 1f the relationship between calendar and
execution time is known, this calculation can be done for a
specific model. Simlarly, the operational cost as a function of
fal|pée u?ten5|ty must be conputed. The follow ng costs nust be
consi der ed:

1. Term nating an inproperly functioning programin an
orderly manner.

2. Reconstructing affected databases.

3. Restarting the program
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4, Determ ning the cause(s) of the failure.

5. Devel opi ng procedures to prevent further failures of that
type.

6. Repairing the fault(s) <causing the failure if the
severity and criticality of the failure warrants
corrective action.

1. Testing the software to validate any repairs.

8. Effect of simlar failures in the future on mssion or

program success.

Determnation of the failure intensity requirenment then becomes a
const rai ned-m ni rum problem that can be solved analytically or
numerical | y.

A closed form expression for the operational cost of failures is
difficult, if not inpossible, to obtain. Analyzing the failure
history of simlar historical projects would seem to be an
effective way of estimating the costs, since institutional problem
reporting and tracking nmechanisns require that the effort required
to identify and correct a problem be recorded along with the
probl em description. Frequently, however, this information is not

recorded, nor is it necessar|y¥ accurate when it is recorded.

Wthout a statistically significant wuniverse of projects to
anal yze, determ nation of the operational cost of failure becones
impossible. ~ This nmethod for determning failure intensity
requi rements is not recomrended unless there is a well-established,

practical nechanism for systematically recording and tracking
operational failure cost.

8.2.2 Setting up a Data Collection Process

Wien setting up a software reliability measurenment program
there are several pitfalls to be avoided. First, there is often
the notion that every bit of information about the program and what
happens to it as it evolves over the life cycle needs to be kept.
Too nmany organi zations do not have a clearly defined objective for
their data collection process. As a result, much effort is expend-
ed Wth little gain. It is often felt that all of the data is
necessary so that if someone identifies a specific objective, the
pertinent data to supﬁort it has nost |ikely been gathered. Fre-
guently, this approach results in a costly inpact on the software

evel opment process with little or no positive inpact. There have
been many instances in which large data collection efforts have
been inplenmented w thout any capability to anal yze the data.
Clearly defined objectives are necessary to hel p define the neas-
urement requirenents. In addition, when a large anpbunt of data is
required, it is usually the developnent staff that is affected.
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Cost and schedul e suffer because of the additional effort of
collecting the data. Project_nana%enent conpl ai ns_about the |arge
amount of overhead involved in the data collection w thout any
constructive feedback that could help the devel opnent process.

Use the follow ng sequence of steps to set up a data
collection process. These steps are based on work done by the Al AA
Space-Based Cbservation Systens Conmittee on Standards (sBos COS)
as well as work done in this study.

1 Establ i sh the objectives. The need for this step has
just been discussed. However, the inportance of doing
this cannot be overenphasized. Establishing the

objectives is often the distinguishing point between
successful and unsuccessful data collection efforts.

2. Devel op a plan for the data collection process. |nvolve
all of the parties that will be involved in the data
collection and anal ysis. Thi s includes designers,

coders, testers, QA staff, and line and project software
managers. This insures that all parties understand what
Is being done and the inpact it will have on their
respective organizations. The planning should include
the objectives for the data collection and a data
collection plan. Address the follow ng questions

How often will the data be gathered?

By whom will the data be gathered?

In what formw |l the data be gathered? _

How wi || the data be processed, and how w |l it be

stored?

e. How wi || the data collection process be nonitored
to insure the integrity of the data and that the
obj ectives are being nmet?

f. Can existing nechani sns be used to collect the data

and neet the objectives?

O T

3. |f any tools have been identified in the collection

rocess, their availability, naturity and useability nust

e assessed. Commercially available tools nust not be

assunmed to be superior than internally devel oped tools.

Reliability, ease-of-use, robustness, and support are

factors to be evaluated together with the application

requirenents. If tools are to be developed internally,

pl an adequate resources - cost and schedule - for the
devel opment and acceptance testing of the tool.

4, Train all parties in use of the tools. The data
collectors nust to understand the purpose of the
nmeasurenents and know explicitly what data is to be
col | ect ed. Dat a  anal ysts nust understand a tool's
analysis capabilities and limtations.
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b Performa trial run of the data plan to iron out any
problems and msconceptions. This can save a significant
amount of time and effort during software devel opment.
If prototyping is being done to help specify requirenents
or to try out a new devel opment nethod, the “trial run*
dﬂ}a collection could be done during the prototyping
effort.

6. | MPLEMENT THE PLAN

7. Monitor the process on a regular basis to provide
assurance that objectives are nmet and that the software
Is meeting the established reliability goals.

8. Eval uate the data on a regular basis. Don't make the
reliability assessment after software delivery. Waiting
until after delivery defeats the useful ness of software
reliability nodeling because you have not used the
information for managi ng the devel opnent process. Based
on the experiences reported in [LYU91), [LYU91la], and
(LYU91b], weekly eval uation seens appropriate for many
devel opnent efforts.

9. Provi de feedback to all parties. This should be done as
early as possible during data collection and anal ysis. 1t
I S espeC|alle|nportant to do so at the end of the

devel opment effort. 1t is very inportant to provide
feedback to those involved in data collection and.
analysis so they will be aware of the inmpacts of their
efforts. Parties who are given feedback wll be nore

inclined to support future efforts, as they will have a
sense of efficacy and personal pride in their
acconpl i shnents.

8. 2.3 Defining Data to be Collected

A significant fraction of the data required is already tracked
by eX|st|n? JPL data collection systens. These include the
Probl em’ Failure Report, P/FR), the Failure Report (FR), the
I nci dent/ Surprise/ Anonaly Report (1sar) , and the Discrepancy Report
(DR) systens. Col l ect the following information during those
testing phases for which reliability estinmates will be nade.

L Time between successive failures. Collect the execution
time between successive failures. |If execution tine is
unavail able, testing tinme between successive failures,
measured by calendar tine, can be used as a basis of
appr oxi mat i on. %This may result in |less accurate
estimates of reliability behavior.) Collect the start
and conpletion tinme of each test session. Collect the
times between failures (interfailure times).
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If interfailure tinmes cannot be collected, then collect
test interval lengths and the nunber of failures
encountered during each test interval. Failure frequency
information seens to be nore easily collected than
interfailure tinmes. Test interval |engths nust be
accurately recorded for usable estimates to be made with
this type of data. Also collect the CPU utilization
during the test periods to determne the rel ationship
between CPU and cal endar tine.

For many devel opnent efforts, failure frequency inforna-
tion is the only available type. However, sonme software
reliability tools can use only interfailure tines as
Input. In this instance, the failure frequency data can
be transformed to time-between-failures data in one of
two ways. ‘rhe first way is to randomy allocate the
failures over the length of the time interval. According
to HMUSAB?], for many nodels this random zation wll
result in estimation errors of less than 15% A second
way, easier to inplement, is to allocate the failures
uniformy over the interval length. For exanple, if an
interval is three hours in length and 3 failures occurred
during that interval, the time between successive
failures would then be one hour.

Recall that the way in which uncertainty in the reported
failure tines affects the accuracy of nodeling results.
Probl em reporting mechani sns should be structured such
that the mechanism's resolution is greater than the
average interfailure tine throughout the test cycle.

Functional area tested during each test interval. This
can be done with reference to a software requirenents
docunent or a software build plan. To illustrate the

inportance of tracking this information, reliability
estimates made if this information is tracked are
conpared below to reliability estimtes using the sane
failure data but not tracking the functional areas

tested. Failure data fromthe software integration
testing phase of subsystem from a previous JPL
devel opment effort was used for this exanple. The

software reliability estimtes were made using the
publ i c-domain software reliability nodeling tool SMERFs.
The Goel-Okumoto NHPP nodel was applied to the data. The
software was assuned to be conposed of two largely
I ndependent functional areas, and that each functional
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area woul d be executed 50% of the time during operations.
In producing the estimates seen in Figure 4, the model
was applied to the entire set of failure data. Thi s
yields an estimated failure rate of three failures per
week at week 41 of the testing phase.

The actual failure rate curve, however, iS bimodal.
There is clearly a_chan%e in the test procedure after
week 14 of the testing phase. If it is known that the
software is conposed of two distinct functional areas,
and that after week 14, a different portion of the
software is being tested than during the first 14 weeks,
the reliabilities of the two functional areas can be
separately nodeled to yield a nore accurate reliability
estimate.

Figure 5 shows the reliability estimtes for the
i ndividual functional areas. By the end of week 14, the
expected nunber of failures per week is 8 f-or the first
functional area. During the interval between weeks 15
and 41, only the second functional area is tested. By
the end of week 41., the expected nunber of failures per
week is 1. If the software is delivered to operations at
the end of week 41, and assuming that the functional
areas are executed with equal frequency during each week
of testing, it is seen that during operations, 4 errors
per week can be expected while executing the first
functional area, and .5 errors per week can be attributed
to the second functional area. The resulting estimte of
4.5 errors per week is significantly different fromthe
3 errors per week that were estimated w thout taking the
change in test focus into account.

Significant events that may affect the failure behavior
during test:

a. Addition of functionality to the software under
test or significant nodification of existing
functionality. If the software under test is stil
evolving, the failure intensity may be underes-
timated during the early stages of the program's
devel opnent, vyielding overly optimstic estinates
of its reliability,

b. | ncreases or decreases in the nunber of testers.
This will increase or reduce the failure frequency
(expressed in calendar time) as testers are added
or taken away from the devel opnent effort. The
time spent by each tester in exercising the
software nust be recorded so that the failure
frequency or times-between-failures inputs to the
model s are accurate,

18



C. Changes in the test environnent (addition/renoval
of test equipment, nodification of test equipnent) .
If the test equipment is nodified during a test
phase to provide greater t hr oughput, t he
interfailure tinmes and failure frequencies recorded
subsequently to the nodification will have to be
adjusted to be consistent with the failure data
recorded prior to the nodification. For instance
if the clock speed in the test conputer 1s
increased by a factor of two, the test iIntervals
subsequent to the clock speed increase will need to
be half as long as ther were prior to the speedup
if failure frequency information is being recorded.
If interfailure tines are being recorded, the
interfailure times recorded subsequent to the
speedup will. have to nultiplied bY 2 to be con-
sistent with the tines-between-failures recorded
before the speedup occurred.

d. Changes in the test. nmethod (e.g. switching from
"white box" to "black box" testing, changing the
stress to which the software is subjected during
test) . If the test nethod changes during a testing
effort, or if the software Is exercised in a
different manner, new estimates of the software’s
reliability will have to be made, starting at the
time when the testing nethod or testing stress
changed.

Interfailure tines expressed in terms of CPUtine are the
preferred data. However, failure frequency data is also
recommended since existing problemreporting mechanisms can often
be used. The relative ease of collecting this information wll

encourage the use of reliability nodeling. Currently, nost JPL
probl em reporting systens collect the nunber of failures per unit
test time interval. If your projects have existing mechanisns for

collecting software failure data during devel opmental testing, use
éhIS data to obtain time-between-failures or failure frequency
at a.

|f failure frequency data is used, a useful length for the
test interval nust be determ ned. This is influenced by such
considerations as the nunber of testers, the nunber of available
test sites, and the relative throughputs of test sites. Mny
devel opment efforts sunmmarize their findings on a weekly basis.
For many devel opment efforts, a week during subsystem or system-
| evel testing is a short enough period of tine that the testing
met hod will not change appreciably. For the devel opment efforts
reported on in [LYU91], [LYU91a], and [LYU91b), enough errors were
found in a week's time during the early stages of test to warrant
reconputing the reliability.
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Many devel opnment projects require that test | ogs be kept
during developmental and systemlevel testing, although the
information recorded in these logs is generally not as accurate as
that tracked by the problemreporting system Used as intended,
these | ogs can be used to increase the accuracy of the failure
frequency or interfailure time data available through the problem
tracki ng system bei ng used. Wthout much effort beyond that
required to record failures, the follow ng itens can be recorded:

a. Functionality being tested. The functionality can be
related to items in a software build plan or requirenments
in a software requirenents document. The reliability for
each functional area should be nodel ed separately.

b. Test session start date and tine.
C. Test session stop date and tine.

ect CPU utilization data.

In addition, it may be possibl col | _
ties for each test period.

eto
fromthe test bench's accounting faci
recor ded.

If only one functional area is to be tested during a session,
record only one start and stop tine. If nmore than one functional
area is to be tested, however, start and stop tines should be
recorded for each functional area. If testing is being done at
nmore than one test site, Kkeep a Io% at each test site. To
determ ne test interval lengths, use the test logs fromall test
sites to determne the anpunt of testing tinme spent in a fixed
amount of calendar time. Count the number of failure reports from
all test sites witten against that functional area in the chosen
calendar interval to determne the failure counts. These failure
counts and test interval |engths can then be used as inputs to the
software reliability nodel (s). Note that the reliability of each
functional area is separately determ ned.

8.2.4 Choosing a Prelimnary Set of Software Reliability Mdels

After specifying the software reliability requirenents, nake
a prelimnary selection of software reliability nodels. Exam ne
t he assunptions that the nodels make about the devel opnent net hod
and environment to determ ne how wel |l the% apply to the effort at
hand. For instance, many nodels assume that the nunber of errors
in the software has an upper bound. | f software testinP at the
subsystem | evel does not occur until the software is relatively
mature, and if there is a |low probability of making changes to the
sof twar e actuaIIK bei ng tested, nodels making this assunption can
be included in the prelinmnary selection (e.g. Goel-Okumoto nodel,
Miss Basic nodel). If, on the other hand, significant changes are
being made to the software at the same tinme it is being tested, it
woul d be nore appropriate to choose fromthose nodels that do not
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assume an upper bound to the number of faults (e.g. Muss-Ckunoto
and Littlewood-Verrall nodels). Many nodels al so assune "perfect
debugging." |f previous experience on simlar projects indicates
that nost repairs do not result in new faults being inserted into
the software, choose from those models nmeking this assunption (e.g.
Coel - Ckumot o nodel, Muss- Ckunoto nodel ). However, if a significant
nunber of repairs result in new faults being inserted into the
software, it is nore appropriate to choose from those nodels that

do not assume perfect debugging (e.g. Littlewood-Verrall nodel).

It is inportant to note that there is currently no known
met hod of evaluating these assunptions to determne a priori which
model will prove optimal for a particular devel opnent effort
(GHALY86]. Users are advised that this prelimnary selection of
models will be a qualitative, subjective evaluation. After a nobdel
has been selected, its performance during use can be quantitatively
assessed [GHALY86). However, these assessnent techniques cannot be
applied to the prelimnary selection.

There are additional criteria by which software reliability
nodel s can be evaluated. Six nodel selection criteria identified
in (LYu9i) are reproduced bel ow

1. Model wvalidity:  Includes nmeasurenent accuracy for
current failure intensity, prediction of the tinme to
finish testina with associated date and costs, and
prediction of the operational failure rate.

2. Ease of measuring paraneters: | ncl udes cost, schedul e
I npact for data collection, and physical significance of
paraneters to software devel opnent process.

3. Quality of assunptions: TIncludes closeness to the rea
world, and adaptability to a specific devel opment
environment. This is discussed in nore detail. in section

8.2.8.1, “Applicability of Mdel Assumptions."

4, Applicability: Includes ability to handl e program
evol ution and change in test and opérational environnent.

5. Sin?licity: In concept, data collection, program
I mpl ementation, and validation

6. Insensitivity to noise: Mnimal response to insig-
ni ficant changes in input data and parameters W t hout
| osi ng responsiveness to significant-differences (e.g.
change in test method, changing test scenarios)
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Model | Criteria Resul ts
1 |2 [3 [4 |5 |6

Jel i nski - Mor anda Y |Y Y Y |Y ] Y
Weibull Y |n [Y [Y (DD n
Duane Model =Y |Y |Y [Y |Y_ Y
Rayl ei gh Model A |y |n Y |n_| n
Shick-Wolverton A Y [n [n |Y |n n
Muss Basi ¢ Model Y |Y Y |Y |Y Y
Goel-Okumoto Y |V Y [Y |Y Y
Bayesian Jelinski-Moranda Y |n (Y [Y [n |Y
Littlewooda Model Y In |Y |Y |R y—
Bayesian Littl| ewood |y nly |y [n y*

Kei | ler-Litt ! ewnash v Inlv v [nly
Littlewood-Verrall Y |n |Y |Y |R |V -
Schnei dewi nd Mbdel Y |Y Y |y |Y Y
Muss- Okunot o Y Y [Y |Y |Y yw Y
Littl ewood NHPP Y [n Y |Y |B y— -

Table 8-1 - Results of Aprlying Mc el
Evaluation Criteria to 15 Model

signifies that a particular nodel passes the
eval uation criterion in a specific colum

HY "
"pt signifies that a particular nodel does not pass
the evaluation criterion in a specific colum

1.1l signifies uncertainty as to whether a nodel passes
the evaluation criterion in a colum.

In the "Results" colum, those nodels with zero or one "n" are

marked as "y" (pass). Models with three or nore "n" are marked
as "n" (fail). Qherw se, nodels are nmarked as "-" (not sure).
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As with the nodel assunptions, the prelimnary evaluation of models
with respect to these criteria will be qualitative and subjective.
As part of the work acconplished for the JPL study, fifteen
different nodels were evaluated with respect to these criteria.
The results, presented in (LYusi}, are reproduced in Table 8-1
above.  Users having had no practical experience with software
reliability nodels are advised to use the nodels indicated with a
"y* in the "Results" column as a prelimnary selection. O herw se,
users may apply the above criteria to the nodels they have used to
make a prelimnary selection.

8.2.5 ChoosinqRel i ability Modeling Tool s

Having addressed the issues of nobdel selection and data
collection, reliability nDdeI|n? tool s nust now be sel ect ed.
| nformation about currently-available tools and criteria for
sel ecting them are given elsewhere in this book. For the JPL
study, the public-domain reliability nmodeling tools sMERFS, version
4, was selected. At the time of the study, the points inits favor
wer e:

1. It inplements a large nunber of nodels (9 unique nodels
are inplenented in version 4 of this program

2. Inputs to this nmodel can be in the form of timne-between-
fallures or failure frequencies.

3. | nputs to sMeErrs can be from ASCI| text files, or the
user can enter data fromthe keyboard. If file input is
desired, the ASCII file can be created from the
application tracking the failure data.

4. For many nodels, sMERFS allows the user to predict the
nunber of errors that will be found in a given tine
interval. This can be used to predict failure rates in
the future, thereby allowi ng the user to estimte how
much nore testing time will be required to achieve a
specified reliability requirement.

5. In estimating nodel paraneters using the failure data,
SMERFS W || provide confidence values for these param
eters if maximum i kel ihood estinates are requested.

6. It allows the user to produce plots of actual and
estimated failure behavior, display summary statistics of
the failure data, modify existing failure data, and
performlinear and non-linear transformations on the
failure data.

1. It produces plot files that can be inported into nany
spreadsheet or drawi ng packages as ASClI| text. These
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10,

11.

files can be easily nmanipulated to produce failure rate
and cunul ative nunber of failures plots.

The printed docunentation for SMERFS adequately describes
the capabilities of the tool and helps the user apply the
model s to failure data.

SMERFS runs on a wide variety of platforms and operating
systens. Sone of these are:

MBDOS- based machi nes
The Maci nt osh

UNI X wor kst ati ons
VAX wor kst ati ons

CDC Cyber

The fact that the FORTRAN 77 source code is shipped along
with the executable file allows users to conpile and run
the program in al nbost any environnent. Since no
extensions to FORTRAN 77 are used, SMERFS functionality
shoul d remai n unchanged, regardless of the environnent in
which it executes.

The user can nndify_the on-line help file, since it is
shipped as a text file along with the source files.

SMERFS is in the public domain and can be obtained free
of charge by contacting Dr. WIlliam Farr of the Naval.
Surface Weapons Center, Code B-10, Dbahlgren, VA, 22448.

Al though it had nmany advantages, SMERFS version 4 did
sone shortcomngs. The nost inportant of these are:

1

There are currently no capabilities, such as those
described in [GHALY86], to deternmine the applicability of
a specific nodel to a set of failure data. Version 5 of
SMERFS does have these capabilities

Version 4 of SMERFS does not allow the user to conbine
the results of different nodels in the manner suggest ed,
In (LYU91), [LYU91a]), and ({LYU91b). The public-domain
t ool CASRE, described el sewhere in this book, does have
this capability. ,

The variety of plots was limted. Version 4 of SMERFS
produced plots of actual and estimated interfailure tines
and failure frequencies. Reliability and cumul ative
nunber of failures (actual and estinated) would have been
useful additional features, as would a display of
confidence bounds on these plots. However, these types
of plots are not available.
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4* The graphics quality was | ow. SMERFS itself p
"line printer" quality plots. However, the capab
producing a plot file that can be inpor
fﬁreadsheets, statistics, and draw ng packages all

I's problem

The on-line help facilities were limted to descriptions

of the various nodels. On-line help could only be
i nvoked when the user w shes to execute a nodel.

The editing facility was a sinplified line editor, rather
than a screen editor. In addition, the editor comands
are inplemented as choices on a full-screen nenu, so the
file beinﬂ edited is not always visible. Swi t chi ng
between the nmenu and the file being edited can be
di sorienting.

I'n conclusion, SMERFS was the preferred software reliability
nmodel ing tool, providing that it was ‘not necessary for the user to
determne the appllcabyllny_of specific nodels to a failure data
set in the manner described in [GHALY86]. .

8.2.6 Final Reliability Mdel Selection

_Having investigated nodel  assunptions, conpleted the
prelimnary nodel selection, and identified tools inplenenting
these nmodels, the final. nodel selection nust now be made. Mor e
than one nodel may be selected - there have been suggestions that
the results of two or three nodels be conbined in sone fashion to
yield better reliability estimates than those available from a
si ngl e nodel ([GHALY86],[LY091],LLYU91a],[LYU?1b]). Resul ts of
the investigation conducted for the JPL study indicate that the
Goel-Okumoto, the Miss-Ckunpto, and the Littlewod-Verrall are
applicable to a wide range of JPL devel opment efforts. Over the
entire set of data examned for this study, an arithnetical average
of the estimates fromthe Goel-Okumoto, the Misa-Ckunoto, and the
Littl ewood-Verrall nodels perfornmed consistently better than the
I ndi vi dual nodel s ({LYU91], {LYU91a), [LYU91b]}).

8.2.7 Model Application and application |ssues

After setting up a data collection nmechani smand sel ecting the
model (s) and tool%s) to support a software reliability neasurenent
program software reliability measurement can be started. Do not
attenpt to nmeasure software reliability during unit test. Although
observed errors may be recorded during this testina phase. the
I ndi vi dual units of code are too small to make valid software
reliability estimates. Experience with JPL data indicates that the
earliest point in the life cycle at which neaningful software
reliability measurements can be nmade is at the subsystem software
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“integration and test level. Qher organizations report sinlar
findings. Experience gained in the JPL study, as well as enpirical

evidence reported in [Musas7), indicate that software reliability
measurement  should not be attenpted. for a software system
containing fewer than 2000 |ines of uncommented source code. No
way of analytically determ ning the mninum size of a software
system whose reliability can be nodeled is currently known.

8.2.8 MODEL APPLI| CATI ON 1SSUES

The foll owi ng paragraphs deal with three major issues of
apEIylng software reliability nodels. First of all, each nodel
makes assunptions about the devel opment process. These assunptions
may not be valid for specific devel opnent efforts. The nost
questionabl e assunptions are listed and the inpacts they may have
on the accuracy of reliability estinmates are discussed.

Secondly, a priori selection of the best nodel for a deveIoF-
ment effort does not seemto be possible. However, it is possible
to determne the applicability of a nodel to a particular set of
failure observations after use of the nodel has started. Paragraph
8.2.8.2 sunmmari zes the techniques described in %GﬁALY86] for
determning the applicability of a nodel to a set of ftailure data,
and describes ways in which the results of such an “applicability
evaluation" may be used to choose an appropriate nodel.

Finally, software that is under test may be sinultaneously
undergoi ng change.  The volunme of the changes may affect the
accuracy of the reliability estinmates. Paragraph 8.2.8.3 discusses
ways of dealing with evol ving prograns.

8.2.8.1 Applicability of ©Mddel Assumptions

This section explores in greater detail some of the
assunptions made by sone of the nore widely-used software
reliability nodels. These assunptions are nmade to cast. the nodels

into a nathenaticallK tractable form However, there may be
situations in which the assunptions for a particul ar nodel or set
of nodels do not apply to a devel opnent effort. In the follow ng

par agraphs, specific nodel assunptions are |listed and the effects
ghey_gag have on the accuracy of reliability estinmates are
escri bed.

a. During testing, the software is operated in a nanner
simlar to the anticipated operational usage. Thi s
assunption is often made to establish a relationship
between the reliability behavior during testing and the
operational reliability of the software. In practice,
t he usage pattern during testing can vary significantly
fromthe operational usage. For instance, functionality
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that is not expected to be frequently used during
operations (e.g. system fault protection) wll be

ext ensi vel tested to ensure that it functions as
required when it is invoked.

One way of dealing this issue is to model the reliability
of each functional area separately, and then use the
reliability of the least reliable functional area to
represent the reliability of the software system as a
whole. Predictions of operational reliability that are
made this way will tend to be lower than the reliability
that is actually observed during operations, provided
that the sane inputs are used during test as are used
during operations. |f the inputs to the software during
test are different fromthose during operations, there
will be no relationship between the reliability observed
during test and operational reliability.

There are a fixed nunber of faults contained in the
software. Because the nmechani snms by which errors are
introduced into a programduring its devel opnent are
poorly understood at present, this assunption is often
made to make the reliability calculations nore tractable.
Mbdel s making this assunption should not be applied to
devel opnent efforts during which the software version
being tested is sinultaneously undergoing significant
changes (e.g. 20%or nore of the existing code is being
changed, or the anmount of code is increasing by 20%o

mre) . Among the nodels naking this assunption are the
Jel 1 nski - Moranda, the Goel-Okumoto, and the Miss Basic
Model s. However, if the major source of change to the

software during test is the correction process, and if
the corrections made do not significantly change the
software, it is_generalby safe to make this assunption
In practice, this would tend to limt application of
nmodels nmaking this assunption to subsystemleve
integration or later testing phases.

No new errors are introduced into the code during the
correction process. Although there is always the
possibility of i1ntroducing newerrors during debugging,
many nodels nmake this assunption to sinplif t he
reltability calculations. In many devel opment efforts,
the introduction of new errors during correction tends to
be a mnor effect. In {LYU91)], several nodels maki ng
this assunption perforned quite well over the data sets
used for nodel evaluation. If the volume of software,
neasured in source |ines of code, being changed durin?
correction is not a significant fraction of the volume o
the entire program and if the effects of repairs tend to
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be limted to the areas in which the corrections are
made, it is generally safe to nake this assunption.

d. Detections of errors are independent of one another.
This assunption is not necessarily valid. |ndeed, there
I's evidence that detections of errors occur in groups,
and that there are sone dependencies in detecting errors.
The reason for this assunption is that it. enornously
simplifies the estimation of nodel parameters.  Deter--
m ning the maxi mum |ikelihood estimator of a model
paraneter, for instance, requires the conputation of a
joint probability density function (pdaf) involving all of
the observed events. The assunption of independence
allows this joint pdf to be conputed as the product of
the individual pdfs for each observation, keeping the
conputational requirements for paraneter estimtion
within practical limts.

Practitioners using any currently-avail able nodel s have
no choice but to nmake this assunption. Al of the nmbdels
anal yzed as part of the JPL study and reported on in
[LYU91), (LYU91a], [(LYU91b] neke this assunption.

Nevert hel ess, practitioners from AT&T, Hew ett Packard

and Cray Research report that the nodels produce fairly
accurate estimates of current reliability in many
situations. |If inputs to the software are independent of
each other and independent of the output, error detection
dependenci es may be reduced.

8.2.8.2 Determining Mddel Applicability

“As previously stated, there is no known method of determ ning
a priori the “best” reliability nodel for a software devel opnment
effort. However, once use of a model has started, anal yses can be
done to determne the applicability of the nodel to the failure
data used as input to the nodel. The follomjng(faragraphs sum
marize these analysis nmethods, which are detailed in [GHALY86].

The prequential |ikelihood ratio can be used to discredit one
nodel in favor of another for a particular set of failure data.
Recall that software reliability nodels treat the time to failure
as a randomvariable T,. The cunul ative distribution function F,(t)
for this random variable is based upon the previous i-1 observed
times to failure t,, t,, .., t,.,,. The probability density function
f,(t) of the random variable T, is the tine derivative of the
cumul ative distribution function. For one-step ahead predictions

of Ty, Tyezy s Ty,,, the prequential likelihood is given by:
PLR, - ] f;(¢y)
I=3+1
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A comparison of two nodels, A and B, nmay be made by formng the
prequential |ikelihood ratio pLR, = PL*/PLSE. The reliabili t%/
practitioner believes that either model Ais true with p(A) or tha
model B is true with probability p(B) = 1 - p(A). The practitioner
observes the failure behavior of the system bakes predictions
using the two nodels A and B, and conpares the predictions to the
actual behavior via the prequential likelihood ratio. When
predictions have been made for T, Ty,,., Ty.., the PLR is given by:

p(tjinl"'l tj‘lltj""l tl,A)
p( tj+nl ey tj#lltjl ey t1l B)

P L R, =

Usi ng Bayes' Rule, PLR, is rewitten as:
.p(A'tj‘n,..., tl)p(tj+nl"'l tj*lltj""'tl)
_ - P (Altjl‘“l tl)
P(Bltsns s £ Dty EjaalEgon b))
p(Blt,, .., t;)

PLR

n

= p(AItjqﬂ"-I tl) p(B|t1l---l Cj)
D(Bltjups i ;) " D(A[Ey, .., )

If the initial predictions were based only on prior belief, the

second factor of the |ast equation is the prior odds ratio. [f the
user is indifferent between nodels A and B at this point, this
ratio has a value of 1, since p(A) = p(B) . The last equation is
then rewitten as:
PLR, - Y
1-w,

This is the posterior odds ratio, where w, is the pOSteri O belief
that Ais true after nmaking predictions with both A and B and
conparing themwth actual behavior. [If PLR, - » as n = «, nodel
B is discarded in favor of nodel A

A nodel can also be evaluated to determ ne whether the
predictions it nmakes are biased. One way of doing this is to draw
a u-plot. Consi der the follow ng transformation:

. v, = Fi(ty) .
Each u; is a probability integral transform of t he observed tine to
failure t, using the previously calcul ated predictor Fr, based upon
ty, t,, .. t,. _In other words, w, is the probability that the
sof t war e V\Al_i fail before time t,. If each r, were identical to the
true, but hidden, F,, the u, would be realizations of independent
i dentical ly-distributed (iid) random vari ables whose values lie in
the interval [0, 1]. The closeness of F, to F, can be exanmined to
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determ ne the extent to which the nodel is biased. One way of
drawing this is to draw the cumulative distribution functions (calf)

for F, and F;, and determne the nmaxinmm vertical distance
(Kolmogorov di Stance) between them The val ue of the Kolmogorov
di stance neasures the extent to which the nodel is biased.

Furthernore, if the cdaf for r is above that for F,, the nodel wl|

yield optimstic (too large) estimates for the tine to failure.

G herwise, if the cdaf for F, is belowthat for F,, the model's
estimates of time to failure will tend to be pessimstic (larger
than the observed times to failure)

Anot her nmethod of analyzing a nodel’s bias is to formthe y-
plot . Wien the cdaf of the u, was plotted in the u-plot, the
tenporal ordering of the u, was lost. This can cause a nodel which
Is optimstic in the early stages, but pessinmistic later on, to
appear unbi ased when examning the u-plot. To examne the u, for
trend, their tenporal ordering nmust be preserved. This can be done
using the follow ng sequence of transformations:

Xi ) 'ln(l = U)

where n is the total nunber of failures observed. The caf of the
y; and the cas for r, are then drawn, as was done for the u-plot
This y-plot reveals trends in the u. The point at which the caf
of the y, departs fromthe cdf for F indicates the time at which
the estimates made by the nodel are bi ased.

Finally, a nmeasure of the noisiness of a model's estimates can
be nade. e nedian variability is defined as:

Z:|rn n-»i_imi'l‘

where my is the predicted nedian of the random variable T,.
Comparing this value for two different nodels can indicate
obj ectively which model is producing the nost variable predictions.
However, this does not indicate whether the variability reflects
the true variability of the actual reliability.

8.2.8.3 Dealing Wi th Evolving Software

Al'l of the nodel s described in the preceding paragraphs assume
that the software being tested will not be undergoing significant
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changes during the testing cycle. This is not always the case. A
sof tware system undergoing test may be sinultaneously undergoing
devel opment, with changes being made to the existing software or
new functionality being added periodically. To accurately nodel
software reliability in this situation,  changes made to the
software have to be “taken into account. There are three ways of
handl i ng changes to a program under test. These approaches are:

1. | gnore the change. _ _

2. Apply the conponent configuration change
met hod. _ _ _ _

3. Apply the failure tine adjustment technique.

I gnoring changes is appropriate when the total volune of
changes is small conpared to the overall size of the program In
this case, the continual re-estimtion of parameters wll| reflect
the fact that some change is in fact occurring.

The conponent configuration change approach is appropriate for
the situation in which a small nunber of |arge changes are nade to
the software, each change resultinﬂ fromthe addition of indepen-
dent conponents (e.g. addition of the telenetry gather|ng and down-
linking capability to a spacecraft command and data subsystemn.
The reliability of each software conponent is nodel ed separately.
The resulting estinmates are then combined into a reliability figure
for the overall system

The failure time adjustnment approach is nost appropriately
used when a program cannot be conveniently divided into separate
I ndependent subsystens and the programis changing rapidly enough
to produce wunacceptable errors In estimating the software's
reliability. The three principal assunptions that are nmade in
failure tine adjustnent are:

L The program evol ves sequentially. At any one time, there
is only one path of evolution of the program for which
reliability estinmates are being nade.

2. Changes in the program are due solely to growh.
Di fferences between’ version k and version k+1 are due
entirehg to new code being added to version k.

3. The nunber of faults introduced by changes to the program
are proportional to the volune of new code.

Figure 6 provides an exanple of a software systemto which failure

time adjustment techniques could be applied. This figure
represents the cunul ative nunber of errors for the system whose
failure frequencies are shown in Figures 4 and 5. ecal | that.

Figures 4 and 5 show abrupt changes in the failure frequency at.
week 34. For this exanple, this change is attributed to the ad-
dition of new functionality to the software under test. The
testing method remains the sane during the two stages.
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‘ When testing proceeds in tw stages, the expected nunber of
failures as a function of tinme will follow a known curve during the
first stage (weeks 0-14 in Figure 6). The paraneters of this curve
wi |l depend on the fault content and the total anount of code being
executed in this stage. After the fourteenth week of testing (week
14 in Figure 6, denoted b& t"in the tex%?, addi tional code that
i mpl ements the remminder the systemis added. At this point, the
curve representing the expected nunber of errors will switch to the
one that woul d have occurred for a systemin its final configura-
tron. The curve, however, is tenporally translated, the anount of
transl ation depending on the number of failures that were exper-
ienced during the first test stage. The trans|ation can be
determ ned by nodeling the first and second stages independently,

_ | f the Goel-okumoto nodel is used, the paraneters for the
first and second stages are as follows:

B BT

317 .0487787

First Stage

Second Stage 413 _;p461496
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Figure 6 - Curul ative Nunber of Errors for a
Spacecraft Control and Data Subsystem
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In the first stage, then, the expected nunber of failures is given
bK Bi(t) = a; (1 - exp(-bit)). Substituting the values of a and b in
the table above, and using a value of 14 Tor t, the expected nunber
of errors is 156. Now assune that testing had started using the
final configuration, represented by the second stage. The expected
nunber of errors would be given by p,(t) = a,(1 - exp(-b,t)), USing
the values of a and b given for the second stage. For the second
stage, the nunber of failures expected to be observed during the
first stage (156) would be observed in 10 time units, denoted by
t', rather than in 14, Therefore, in going fromthe first to the
second stage of testing, the expected nunber of failures, u(t),

will be a translated version of the expression for u,(t). The
amount of translation is given by t' - t’, which in this case is 4.
p(t) = a; (1 - exp(-b,(t - (t' - t%))))
or

p(t) = a(l - exp(-b,(t - 4)))
The follow ng general expression denotes the transformation

that will take a value of the tine to failure t, to the adjusted
val ue t;:

t = QL I,, 1,, A1, A1, ﬁ“)
wher e
t, = the interfailure tinme t,, observed in the unchanged
sKsten1 transforned to the expected interfailure tinme in The
changed system

I, = the total nunber of executable instructions (devel oped
and inherited) for stage 1..

I, = the total nunber of executable instructions (develoved
and inherited) for stage 2.

A1, = the nunber of executable instructions devel oped for
stage 1.

AT, = the nunber of executable instructions devel oped for
stage 2.

B., = paraneters of the nodel for the first stage of testing.
The specific expression for the transformati on depends on the
software reliability nodel that is used. Once the adjusted failure
times t; have been found, these t,, rather than the unadjusted t,,
are used in making reliability estimates in the future.

The two-stage transformation can be generalized to a testing
phase in which there are nore than two stages. For two testing
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stages k and 1, stage k preceding stage 1, the transformation is
witten as:

t, = Qu(tys I, I, AT, AIuv Bay)

The paraneters of this transformation have the sane neaning as for
the two-stage transformation. Specific forns of this trans-
formation for the Miuss Basic and Miss- Okunpbto nodel s are given
below. The formfor the Muss Basic nodel is:

- AT
™1 _ kf4 - ~dpty
t; - .¢kI)}n11 7 _Il[l e 1}

d = the failure intensity decay factor for stage k of the
testing effort.

I, = the total number of executable instructions (devel oped
and inherited) for stage k.

I, = the total nunber of executable instructions (devel oped
and inherited) for stage 1.

Al, = the nunber of executable instructions devel oped for
stage k.

A1, = the nunber of executable instructions devel oped for
stage 1.

For the Muss-COkunoto nodel, the failure transformation tinme is:

6,

~ 1 *

ty = ’¢_1(¢kti + l)T -1
0, = the failure intensity decay parameter for stage k, and
0, = the failure intensity decay paraneter for stage 1. “
$= A0

The relation of ¢ to ¢ or 6 to 8, cannot be determ ned using
current practice. Further details on failure time adjustment
can be found in [MUsA87].

6.3 . | Resul

8.3.1 comparison of | ndividual Mbdels

N

During the course of the JPL study, we found that it would be
possible to apply software reliability nodels software devel opnent
efforts at JPL. = The mmjor difficulty encountered was collecting
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the failure history data described in section 8.2.3, although we
did find that many devel opment efforts are already set up to
collect this type of information. Al that would have to be done
”s to enforce requirenments for using the nechanisns already in
pl ace.

we found that there was no one "best" nodel for the
devel opnent efforts that were studied. This is consistent with the
findings reported in [GHALY86]. The follow ng tables summarize the
anal ysis of nodel apﬁl|cab|llty for the JPL efforts.  For each
development effort, the nodels aBplled were eval uated with respect
to ﬁre uential |ikelihood, nodel bias, bias trend, and nodel noise.
Each of these criteria was given equal ME|?ht|ng in the overall
ranking. The abbreviations used in the tables are:

0 DU - Duane nodel

0 @0 - Goel-Okumoto nodel

0 JM - Jelinski - Moranda nodel

0 IM - Littl ewood nodel

0 LV - Littlewood-Verrall nodel

0 MO - Muss-Ckunmoto nodel

0 PL - Prequential Likelihood
Measur e JM &0 MO DU LM LV
PL 6 3 2 4 5 1
Bi as 5 3 3 2 5 1
Trend 5 3 2 6 4 1
Noi se 5 3 2 1 5 4
Overal | 6 3 2 4 5 1
Rank

Model Rankings for Flight System1

Measur e JM &0 MO DU M LV
PL 2 4 5 6 2 1
Bi as 3 3 5 1 6 2
Trend 3 4 6 2 4 1
Noi se 3 2 1 5 4 6
Overal | 2 3 5 4 6 1
Rank

Model Rankings for Flight System 2
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Measure JM €O MO DU LM LV
PL 3 2 5 6 2 1
Bi as 3 3 1 2 5 6
| Trend 3 2 5 6 3 1
| Noi se 5 4 3 1 5 2
Overal | 3 2 3 5 5 1
i Rank | . . !
Model Rankings for Flight Subsystem 1
Measure JM €O MO DU LM LV
PL 3 3 3 1 3 2
Bi as 4 4 2 1 2 6
Trend 3 3 3 2 3 1
Noi se 1 1 1 5 4 6
Overal | 3 3 1 1 5 6
Rank
Model Rankings for Flight System 3
Measure JM (€O) MO DU LM LV
PL 1 4 1 6 1 5
Bi as 1 1 1 6 1 5
Trend 1 3 4 5 1 6
Noi se 3 2 1 5 4 6
Overal | 1 4 2 5 2 5
Rank
Mbdel Rankings for Gound System 1
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8.3.2 Discussion of Results

Fromthe tables above, it’'s easy to see that a nodel that
erfornms well for one devel opment effort may do poorly in another.
or instance, the Littlewood-Verrall nodel performs very well for

the first three data sets - in fact, it out-perforns all of the
ot her nodels. However, it conmes in last for the remaining two
devel opment efforts. This inconsistency is repeated for the other
five nodels, as well. There were no clear differences between the
devel opnment processes for the flight systenms and subsystens,

certainly none that would favor the selection of one nodel over
another prior to the start of test. These findings suggest that
mul tiple nodels be applied to the failure data during the test
phases of a devel opnent effort, preferably nodels making different
assunptions about the error detection and renoval processes. In
addition, the nodels should be “continually evaluated for
applicability to the failure data. The npdel or nodels ranking
hi ghest with respect to the evaluation criteria should then be
chosen for use in predicting future reliability. The criteria we
suggest are the sane as those described in [(cHALY86), al t hough
other criteria, such as traditional goodness-of-fit tests or the
Akai ke Information Criterion may also be used.

8.4 Li near Conbi nati ons of Mddel Results

Qur other finding was that |inear conbinations of model
results appear to provide nore accurate predictions than the
i ndi vi dual nodel s thenmsel ves. W adopted the followi ng strategy in
form ng conbination nodels:

1. |dentify a basic set of nodels (the conponent nodels).
|f you can characterize the testing environnent for the
devel opnent effort, select nodels whose assunptions are
closest to the actual testing practices.

2. Sel ect nodel s whose predictive biases tend to cancel each
other. As previously described, nodels can have opti-
mstic or pessimstic biases.

3. Separately apply each conponent nodel to the data.

4. Apply criteria you've selected to weight the selected
component nodels (e. g. changes in ‘the preauential
l'ikelihood) and fen” the combination nmodel fo-r the final
predictions. Wights can be either static or dynamcally
det erm ned.

In general, this approach is expressed as a m xed distribution,
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£,(8) = Y witi(¢e)

i J}-:lfli
where n represents the nunber of nodels, the sumof all of the
weights w2 1s 1, and f ,3(t) represents the predictive probability
density tunction for the j'th conponent nodel, given the i-1
observations of failures have been made.

For the JPL failure data, the conbination nodels often
outperforned the other six nodels that were evaluated wth respect
to the criteria identified and described in the preceding sections.
We experinented with three types of conbinations:

1. Statically-weighted conbinations.

2. Dynam cal | y-wei ght ed conbi nations, in which weights are
determ ned by conparing and ranking nodel results.
3. Dynam cal | y-wei ghted combi nations, in which weights are

determ ned” by changes in nodel evaluation criteria.

These types of conbinations are further described in the follow ng
par agr aphs.

8.4.1 Statically-Weiahted Linear conbinations

Two types of statically-weighted conbinations were forned,

The first conbination, the Equally-Wighted Linear Conbination
(ELc) nodel, was formed by assigning equal weights to the Goel-
Okumoto, Muss- Ckunoto, and Littlewood-Verral nodels. Because these
wei ghts remain constant throughout the nodeling process, this
compbi nation is very easy to formif the results from the conponent
nodel s are avail abl e. Over the failure data sets that were
anal yzed, the ELC nodel performed surprisingly well.

8.4.2 Weight Determ nation Based on Ranking Mdel Results

~ Conbination nodels may produce nore accurate results if the
wei ghts are dynam cally assigned rather than remaining static:
t hroughout the nodeling process. One way of dynamically assigning
meh%hts i s based on sinply ranking conponent nodel results. If a
conbi nati on nodel contains "n" conponents, choose a set of "n"
val ues that can be assigned to the conponents based on a ranking of
model results. One of the conbinations that we experinmented wth
was the Medi an- Wi ghted Linear Conbination (MLC), which was

conposed of the Goel-Okumoto, Littlewdod-Verrall, and Muss- Ckunoto
model s. For each failure, the conponent nodels would be run, and
the results of the nodels would then be conpared. The nodel s

predi cting the highest and |lowest tinmes to the next failure would
then be given weig-hts of Oin the conbination, while the prediction
in the mddle would be given a weight of 1.
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The other conbination of this type with which we experinmented
was the Unequal | y-Weighted Linear Conbination (urc) nodel. Thi s
was fornmed with the sane conponents as the M.C nodel - the only
di fference was that the conponent nodels producing the highest and
| onest predictions of the time to the next failure were given
weights of 1/6 rather than O, while the conmponent making the mddle
prediction was given a weight of 4/6.

This type of conbination nodel is not quite as easy to form as
the ELC nodel previously described, but does not require the nore
cpnﬁl|cated calculations required for the last type of conbination
wi th which we experinented.

8.4.3 Weight Determ nation Based On Changes iN Prequential
Li kel i hood

~The last type of conbination with which we experinented was
one in which weights were both dynamcally determned and assigned.
The basis for determning and assigning weights was changes in the
prequential |ikelihood (see chapter TBD) over a small nunber of
observations. There are two ways in which weights can be conputed
for each nodel. First, we can |ook at changes in the prequential
|ikelihood every N observations, and reconpute the weights for each
conbi nation after every Nth observation. The second way is to
reconpute me|?hts after every observation, using the changes in the
prequential [ikelihood over the nost recent N observations to
cog%ute and assign the weights. W refer to the first type of
conbination as a _DLC/F/N, which stands for nam c Lj near
Conbi nation with a Fixed w ndow of N observations. he second type
of conmbination is called a prc/s/N, in which S refers to the
squing wi ndow, N observations w de, which is used to reconpute the
wei ght s.

8.4.4 Di scussion of Results

W found that over the JPL failure data sets that we anal yzed,
as well as for historical failure data reported in [MUSA80), the
conbi nation nodels consistently outperforned the other nodels that

we eval uat ed. The results are given in the tables on the next
page. For the conbinations with we worked, which were fornmed using
the Goel-Okumoto, the Littlewood-Verrall, and the Miss-Ckunoto

model s, the conbi nati on models sonetines outperformed all of their
conponent nodels, and never performed worse than the worst
conponent  nodel . The ELC and DLC nodels perforned nore
consistently than the nodels. We believe that the ELC nodel’s
performance is due to the equal weighting. By contrast, the
wei ghting schenes for the ULC and M.C nodels may allow wei ght
assignments which do reflect how close the conponent nodel results
are to one another. Finally, the superior performance of the DLC
nodel is because the weights for each conponent are dynamcally
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determned, and are closely related to the |ikelihood of one
conmponent produci ng nmore acc-urate predictions than another.

Model | UM | GO | MO| DU [ LM| LV | ELC [ ULC | M.C | DLC
Dat a
Miss data set 1 1ol o | 1 | 6 [8 6| 4 2 3 5
Miss data set 2 9 (10| 6 | 7 8 1 4 5 2 2
Miss data set 3 6 |8 | 4 9 9 6 4 3 2 1
JPL flight system 1 100 7 6 I 9 2 2 4 5 1
JPL flight system 2 51 7 | 10| o 0 4 1 3 8 2
JPL flt subsystem 1 | 8 | 6 6 8 10 1 1 1 4 5
JPL flight system 3 5 5 8 1 9 | 10 1 5 4 3
JPL ground system 1 1 5 1 9 3 10 8 7 3 6
Overall rank 8 9 6 7 110 5 1 3 4 1

summary ot nodel rar aings using all four criteria

Model |JM (Go (MO | DU | IM | LV | ELC | ULC | M.C | DLC
Dat a —
Miss data set 1 10 9 12181617 5 NE 1
Miss data set 2 T7 1o |alaolzi | 4| a3 ]|
Musa data set 3 4 7 4 |10] 8 9 2 2 4 1
JPL flight system 1 | 10 7 6 8 9 2 3 4 5 1
JPL flight system 2 s 1 719110l 5 | 4 2 |_3_1| 8 1
JPL flt subsystem 'l 6 5 8 |10 | 6 2 3 4 8 1
JPL flight system 3 6 6 6 2 6 5 3 4 6 1
JPL ground system 1 2 6 2 10 2 9 8 T . 2 1
Overall rank 8 9 6 [10 | 7 4 2 3 4 1
— Summary of nodel rankings using only prec ient: 1 1: :elit rod
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